Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutat Res ; 765: 40-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24632511

RESUMO

Alkylating agents are used in anti-tumor chemotherapy because they bind covalently to DNA and generate adducts that may lead to cell death. Bifunctional (HN2) and monofunctional (HN1) nitrogen are two such agents, and HN2 was the first drug successfully employed in anti-leukemia chemotherapy. Currently, HN2 is used either alone or combined with other drugs to treat Hodgkin's disease. It is well known that several crosslinking agents require metabolic activation via reactive oxygen species (ROS) to exert their lethal effects. The objective of this work was therefore to determine whether the abovementioned mustards would also require metabolic activation to exert lethal action against Escherichia coli. For this purpose, we measured survival following exposure to HN2 in E. coli strains that were deficient in nucleotide excision repair (uvrA NER mutant), base excision repair (xthA nfo nth fpg BER mutant) or superoxide dismutase (sodAB mutant) activity. We also performed the same experiments in cells pretreated with an iron chelator (2,2'-dipyridyl, DIP). The NER and BER mutants were only sensitive to HN2 treatment (survival rates similar to those of the wild-type were achieved with 5-fold lower HN2 doses). However, wild-type and sodAB strains were not sensitive to treatment with HN2. In all tested strains, survival dropped by 2.5-fold following pretreatment with DIP compared to treatment with HN2 alone. Furthermore, DIP treatment increased ROS generation in both wild type and sodAB-deficient strains. Based on these data and on the survival of the SOD-deficient strain, we suggest that the increased production of ROS caused by Fe(2+) chelation may potentiate the lethal effects of HN2 but not HN1. This potentiation may arise as a consequence of enhancement in the number of or modification of the type of lesions formed. No sensitization was observed for the non-crosslinkable HN2 analog, HN1.


Assuntos
2,2'-Dipiridil/farmacologia , Antineoplásicos Alquilantes/farmacologia , Quelantes/farmacologia , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Mecloretamina/farmacologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mutação , Espécies Reativas de Oxigênio/metabolismo
2.
Mutat Res ; 582(1-2): 105-15, 2005 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-15781216

RESUMO

Bifunctional alkylating agents are used in tumor chemotherapy to induce the death of malignant cells through blockage of DNA replication. Nitrogen mustards are commonly used chemotherapeutic agents that can bind mono- or bifunctionally to guanines in DNA. Mustard HN1 is considered a monofunctional analog of bifunctional mustard HN2 (mechlorethamine). Escherichia coli K12 mutant strains deficient in nucleotide excision repair (NER) or base excision repair (BER) were submitted to increasing concentrations of HN2 or HN1, and the results revealed that damage induced by each chemical demands different DNA repair pathways. Damage induced by HN2 demands the activity of NER with a minor requirement of the BER pathway, while HN1 damage repair depends on BER action, without any requirement of NER function. Taken together, our data suggest that HN1 and HN2 seem to induce different types of damage, since their repair depends on distinct pathways in E. coli.


Assuntos
Reparo do DNA , Escherichia coli/efeitos dos fármacos , Mecloretamina/toxicidade , Escherichia coli/genética , Recombinases Rec A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...